Oops! It appears that you have disabled your Javascript. In order for you to see this page as it is meant to appear, we ask that you please re-enable your Javascript!

Tag archives for mikroC

Introduction to MikroC Pro for PIC Compiler

image-165
The aim of this course is to teach you how to develop microcontroller based electronic systems using MikroC Pro for PIC Compiler. MikroC Pro for PIC is a powerful, feature rich compiler fro PIC microcontrollers from Mikroelekronika. It is easy to learn and easy to use with a highly advanced integrated development environment (IDE), ANSI compliant compiler, broad set of easy to use hardware and software libraries, comprehensive documentation and plenty of ready to run examples.

Blinking an LED Connected to a PIC Microcontroller – MikroC

image-284
An LED is a semiconductor light source, when forward biased, it emits light. LEDs are used mainly to indicate the status of electronic circuits, for example to indicate that power is on or off but nowadays they are used in many applications including lighting and beam detection. In this article we will learn how to connect and switch on and off various LEDs to a microcontroller using MikroC Pro for PIC Compiler. This is the simplest project a beginner in embedded programming can start with before attempting any complex projects as we have learned from the Introduction to MikroC Pro for PIC article.

Reading Switches With PIC Microcontroller – MikroC

image-282
Push Buttons or Switches are digital inputs and are widely used in electronic projects as most systems need to respond to user commands or sensors. Reading a switch is very useful because a switch is widely used and can also represent a wide range of digital devices in real world like limit sensors, level switches, proximity switches, keypads (a combination of switches) etc. Connecting a switch to a microcontroller is straight forward, all we need is a pull-up or pull-down resistor. In this article we are going to learn how to use MikroC Pro for PIC to read the status of a switch.

Simple 5V DC Power Supply

image-118
In any electronic products or projects there is always a source of power for the system to work. This is called a power supply. The source of this power can come from different sources like the mains AC voltage, a battery or even from a renewable power source like a solar panel wind turbine or fuel cell to name just a few. The most common source of power is usually the mains AC, with this power, we need a transformer to convert the 220V 50Hz mains or the 120V 60Hz if you are living in the United States of America to a lower voltage required by the electronic circuit, this can be typically between 6V and 12V when 5V regulated DC is needed. In this article we are going to design a simple 5V DC power supply that can be used to power your Microcontroler projects using the 7805 voltage regulator.

Digital Thermometer using PIC Microcontroller and LM35 Temperature Sensor – MikroC

image-136
Temperature sensors are very important in many projects especially in temperature logging devices and alarms. In this article we are going to design a digital thermometer using MikroC Pro for PIC compiler. This digital thermometer is built around the LM35 which is a precision integrated-circuit temperature sensor whose output voltage is linearly proportional to the Celsius (Centigrade) temperature. Its output changes by 10 mV per °C so there is no need for calibration. It can measure a wide range of temperature from −55 to +150°C

Digital Barometer using PIC Microcontroller and MPX4115A Pressure Sensor – mikroC

image-133
The MPX4115A is an atmospheric pressure sensor powered by 5V and delivers and output from ~0.25V to ~4.75V based on the pressure detected at room temperature (25°C). The device provides a linear output based on pressure. It can measure pressures between 15kPa and 115kPa. Note that 1 atmosphere of pressure at sea level is equal to 101,325 Pa or 101 kPa. This sensor is ideal for microcontroller based barometer, altimeter, data logger or weather station applications. In this article, we're gonna create a simple Digital Barometer using mikroC Pro for PIC compiler.

Interfacing LCD Display with PIC Microcontroller – MikroC

image-279
LCDs are alphanumeric (or graphical) displays, which are frequently used in microcontroller based applications which require some information to be displayed to the user. There are many devices in the market which come in different shapes and sizes. Some LCDs have 40 or more character lengths with the capability to display several lines. Some other LCD displays can be programmed to display graphic images. Some modules offer colour displays, while some others incorporate back lighting so that they can be viewed in dimly lit conditions. MikroC Pro for PIC

Interfacing 7-Segment Display With PIC Microcontroller – MikroC

image-168
The 7-segment display is the earliest type of an electronic display that uses 7 LEDs bars arranged in a way that can be used show the numbers 0 - 9. (actually 8 segments if you count the decimal point, but the generic name adopted is 7-segment display.) These devices are commonly used in digital clocks, electronic meters, counters, signalling, and other equipment for displaying numeric only data. It is not different from an LED in terms of interfacing, by turning the appropriate segments ON and OFF we can display easily the numbers 0 to 9 and optionally the decimal point (DP). The segments of the displays are normally referred to by letters ‘a’ to ‘g’. In this article we are going to learn how to interface a single 7-Segment display with PIC Microcontroller using MikroC Pro for PIC compiler.

Multiplexing of 7-Segment Displays with PIC Microcontroller – MikroC

image-171
The 7-segment display is the earliest type of an electronic display that uses 7 LEDs bars arranged in a way that can be used show the numbers 0 - 9. (actually 8 segments if you count the decimal point, but the generic name adopted is 7-segment display.) These devices are commonly used in digital clocks, electronic meters, counters, signalling, and other equipment for displaying numeric only data. It is not different from an LED in terms of interfacing, by turning the appropriate segments ON and OFF we can display easily the numbers 0 to 9 and optionally the decimal point (DP). The segments of the displays are normally referred to by letters ‘a’ to ‘g’. In this article we are going to learn how to multiplex two or more 7-Segment displays to be able to display numbers higher than 9. MikroC Pro for PIC compiler is used in this tutorial.
1 2 5