# Ex 9.6, 17 - Chapter 9 Class 12 Differential Equations (Term 2)

Last updated at Dec. 11, 2019 by Teachoo

Last updated at Dec. 11, 2019 by Teachoo

Transcript

Ex 9.6, 17 Find the equation of a curve passing through the point(0 , 2) given that the sum of the coordinate of any point of curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5 We know that Slope of tangent to curve at (x, y) = ππ¦/ππ₯ Given that sum of the coordinate of any point of curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5 Therefore, |ππ¦/ππ₯| + 5 = x + y |ππ¦/ππ₯| = x + y β 5 ππ¦/ππ₯ = Β± (x + y β 5) So, we will take both positive sign and negative sign and then solve it Taking (+) ve sign ππ¦/ππ₯ = x + y β 5 ππ¦/ππ₯ β y = x β 5 Equation is of the form ππ¦/ππ₯+ππ¦=π where P = β1 & Q = x β 5 IF = e^β«1βπππ₯ IF = e^(β«1βγ(β1)γ ππ₯) IF = π^(βπ₯) Taking (β) ve sign ππ¦/ππ₯ = βx β y + 5 ππ¦/ππ₯ + y = βx + 5 Equation is of the form ππ¦/ππ₯+ππ¦=π where P = 1 & Q = βx + 5 IF = e^β«1βπππ₯ IF = e^β«1β1ππ₯ IF = e^π₯ Solution is y(IF) = β«1βγ(πΓπΌπΉ)ππ₯+πγ yeβx = β«1βγ(π₯β5) π^(βπ₯) ππ₯+πγ yeβx = (x β 5) β«1βγπ^(βπ₯) ππ₯γ ββ«1βγ[1β«1βγπ^(βπ₯) ππ₯γ]ππ₯+πγ yeβx = β(x β 5)π^(βπ₯)ββ«1βγγβπγ^(βπ₯) ππ₯γ + c yeβx = β(x β 5)π^(βπ₯) + β«1βγπ^(βπ₯) ππ₯γ + c Solution is y(IF) = β«1βγ(πΓπΌπΉ)ππ₯+πγ yex = β«1βγ(5βπ₯) π^π₯ ππ₯+πγ yex = (5 β x) β«1βγπ^π₯ ππ₯γ β β«1β[π/ππ₯(5βπ₯)β«1βγπ^π₯ ππ₯γ]ππ₯ yex = (5 β x) π^π₯β β«1βγ(β1)γ π^π₯ ππ₯ yex = (5 β x) π^π₯ + β«1βγπ^π₯ ππ₯γ Integrating by parts with β«1ββ(π(π₯) π(π₯) ππ₯) =π(π₯) β«1βγπ(π₯) ππ₯ γββ«1βγ[π^β² (π₯) β«1βγπ(π₯) ππ₯] ππ₯γγ Take f (x) = x β 5 & g (x) = π^(βπ₯) Integrating by parts with β«1ββ(π(π₯) π(π₯) ππ₯) =π(π₯) β«1βγπ(π₯) ππ₯ γββ«1βγ[π^β² (π₯) β«1βγπ(π₯) ππ₯] ππ₯γγ Take f (x) = 5 β x & g (x) = π^π₯ yeβx =(5βπ₯)π^(βπ₯) β π^(βπ₯)+π Dividing both sides by eβx y = (5 βx) β1 + cex y = 4 β x + cex Since the curve passes through the point (0, 2) Put x = 0 & y = 2 2 = 4 β 0 + ceΒ° 2 = 4 + C C = β2 β΄ Equation of curve is y = 4 β x β 2ex yex = (5 β x) π^π₯+ π^π₯+π Dividing both sides by ex y = (5 β x) + 1 + ceβx y = 6 β x + ceβx Since curve passes through the point (0, 2) Put x = 0 & y = 2 2 = 6 β 0 + ceΒ° 2 = 6 + C C = β4 β΄ Equation of curve is y = 6 β x β 4eβx

Ex 9.6

Ex 9.6, 1
Important

Ex 9.6, 2

Ex 9.6, 3 Important

Ex 9.6, 4

Ex 9.6, 5 Important

Ex 9.6, 6

Ex 9.6, 7 Important

Ex 9.6, 8 Important

Ex 9.6, 9

Ex 9.6, 10 Deleted for CBSE Board 2022 Exams

Ex 9.6, 11 Deleted for CBSE Board 2022 Exams

Ex 9.6, 12 Important Deleted for CBSE Board 2022 Exams

Ex 9.6, 13

Ex 9.6, 14 Important

Ex 9.6, 15

Ex 9.6, 16 Important

Ex 9.6, 17 Important You are here

Ex 9.6, 18 (MCQ)

Ex 9.6, 19 (MCQ) Important Deleted for CBSE Board 2022 Exams

Chapter 9 Class 12 Differential Equations (Term 2)

Serial order wise

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 10 years. He provides courses for Maths and Science at Teachoo.